Title of dissertation : Dynamics and Control of Non - Smooth Systems with Applications to Supercavitating Vehicles

نویسندگان

  • Vincent Nguyen
  • Balakumar Balachandran
  • Nikhil Chopra
  • Guojian Lin
چکیده

Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of Philosophy, 2011 Dissertation directed by: Professor Balakumar Balachandran Department of Mechanical Engineering The subject matter of this dissertation relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed underwater vehicles are designed to have sustained vaporous or ventilated gas cavities that form over the entire vehicle. In terms of the modeling, the system non-smoothness is caused by the interaction forces generated when the vehicle contacts the cavity. These planing interactions can cause stable and unstable dynamics, some of which could be limit-cycle dynamics. Here, planing forces are considered on the basis of non-cylindrical cavity shapes that include shifts induced by the cavitator angle of attack. Incorporating these realistic physical effects into a vehicle system model generates a unique hydrodynamic non-smoothness that is characterized by non-constant switching boundaries and non-constant switched dynamics. Nonlinear stability analyses are carried out, Hopf bifurcations of equilibrium solutions are identified, and stabilizing control is investigated. Also considered is partially cavitating system dynamics, where active fin forces are used to support the vehicle. Non-steady planing is also considered, which accounts for vehicle motions into the cavity, and this planing provides a damping-like component in the planing force formulation. Modeled with non-steady planing is a physical time delay relating to the fact that the cavity, where planing occurs, is based on the previous cavitator position and orientation data. This delay is found to be stabilizing for certain values of speed. Maneuvering is considered by using inner-loop and outer-loop control schemes. A feedback inner-loop scheme helps reject fast planing instabilities, while a numeric optimal control approach is used to generate outer-loop commands to guide the vehicle through desired maneuvers. The maneuvers are considered for operations with tight body to cavity clearance, and in which planing is prevalent. Simple search algorithms along with a penalty method for handling the constraints are found to work the best due to the complexity of the non-smooth system dynamics. Dynamics and Control of Non-smooth Systems with Applications to Supercavitating Vehicles

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Dynamics of a Nonsmooth Supercavitating Vehicle System

As a representative example of a C continuous system, a four-dimensional model of the dive-plane dynamics of the supercavitating body shown in Figure 1 is considered. This model includes a dominant, nonsmooth nonlinearity associated with the planing force [1,2]. The original non-smooth system is approximated by a smooth counterpart, and it is examined as to how well the smooth system captures t...

متن کامل

Stability of Three-Wheeled Vehicles with and without Control System

In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...

متن کامل

طراحی سیستم کنترل ABS با در نظر گرفتن کنترل حرکت کناری به روش ترکیبی PID و SMC

Control Systems such as Anti Lock Brake Systems (ABS) and Traction Control Systems (TCS) are vastly used in most vehicles as to enhance the safety of the systems. These systems have many virtues on controlling the dynamics of vehicles, but they only control the longitudinal dynamics of the vehicle directly and the lateral dynamics of vehicle is not controlled because they do not receive any fee...

متن کامل

Vibration of Road Vehicles with Non linear Suspensions

In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011